582. Molecular Polarisability. The Conformations of Certain Amides as Solutes in Dioxan

By M. J. Aroney, R. J. W. Le Fèvre, and Λ. N. Singh

Dipole moments and molar Kerr constants are reported for formamide (3.85 D and 284×10^{-12}), N-methylformamide $\left(3.84 \mathrm{p}\right.$) and 210×10^{-12}), $N N$-dimethylformamide $\left(3.91 \mathrm{D}\right.$ and $\left.417 \times 10^{-12}\right)$, N-t-butylformamide (3.94 D and 336×10^{-12}), $N N$-diphenylformamide (3.44 D and 406×10^{-12}), acetamide (3.87 D and 257×10^{-12}), N-t-butylacetamide (3.85 D and $195 \times$ 10^{-12}), and benzamide ($3 \cdot 76 \mathrm{n}$ and 234×10^{-12}) as solutes in dioxan at 25°. The data are analysed to indicate that (a) the trans-isomer abundances for N-methylformamide and N-t-butylformamide are 90 and $c a .71 \%$, respectively, (b) benzamide in dioxan is non-planar, the dihedral angle between the benzene ring and the plane of the amide group being $37^{\circ} \pm 5^{\circ}$, and (c) the preferred conformation of $N N$-diphenylformamide is attained by rotations (in the same sense) of both phenyl groups through $52^{\circ} \pm 5^{\circ}$ from a theoretical planar model.

This Paper is concerned with the experimental determination of the dipole moments and molar Kerr constants of a number of acid amides, and with the analysis of such data to yield information on the configurations of these molecules as solutes at high dilution in dioxan.

Table 1
Incremental Kerr constants, dielectic constants, densities, and refractive indices for solutions in dioxan at 25°

Formamide								
$10^{5} w_{2} \quad \ldots$	515	583	753	850	1081	1258	1570	2083
$10^{7} \Delta B \ldots$	$0 \cdot 180$	$0 \cdot 203$	$0 \cdot 264$	$0 \cdot 306$	$0 \cdot 410$	0.515	$0 \cdot 629$	0.818
$\varepsilon^{25} \ldots \ldots \ldots$	$2 \cdot 4195$	$2 \cdot 4480$	$2 \cdot 5144$	-	$2 \cdot 6466$		$2 \cdot 8471$	$3 \cdot 0701$
whence $\Sigma 10^{7} \Delta B / \Sigma w_{2}=38.2 ; ~ \Sigma \Delta \varepsilon / \Sigma w_{2}=40.9$								
$10^{5} w_{2} \quad \ldots$	1215	1386	1510	2184	2829	3853		
$10^{4} \Delta n$..		4		6	8	11		
$d_{4}{ }^{25} \ldots \ldots$	1.02961	1.02984	1.03000	1.03093	1.03174	1.03310		
whence $\Sigma \Delta n / \Sigma w_{2}=0.028 ; ~ \Sigma \Delta d / \Sigma w_{2}=0.133$								
N-Methylformamide								
$10^{5} \omega_{2} \quad \ldots$	342	430	515	545	618	771	849	974
$10^{7} \Delta B \ldots$	$0 \cdot 088$	$0 \cdot 106$	$0 \cdot 129$	$0 \cdot 146$	$0 \cdot 170$	0.221	$0 \cdot 262$	$0 \cdot 289$
whence $10^{7} \Delta B=21 \cdot 8 w_{2}+889 w_{2}{ }^{2}$								
$10^{5} w_{2} \quad \ldots$	375	505	567	824	1074	1292	1769	2075
$\varepsilon^{25} \ldots \ldots \ldots$	$2 \cdot 3238$	$2 \cdot 3818$	$2 \cdot 3903$	$2 \cdot 4820$	2.5745	2.6851	$2 \cdot 8610$	2.9920
whence $\Delta \varepsilon=30 \cdot 95{ }_{5} w^{\prime}+333 w_{2}{ }^{2}$								
$10^{5} 2 e_{2} \ldots$	1137	1554	2109	3232	6691			
$10^{4} \Delta n \ldots$	-	-	2	3	7			
$d_{4}{ }^{25} \ldots \ldots$.	1.02793	1.02791	1.02788	1.02777	1.02753			
whence $\Sigma \Delta n / \Sigma \chi_{2}=0.010 ; ~ \Sigma \Delta d / \Sigma w_{2}=-0.006_{7}$								

$10^{5} w_{2}$	\ldots	472	485	704	780	1035	1287	1751
$10^{7} \Delta B$	0	$0 \cdot 149$	-	$0 \cdot 248$	$0 \cdot 253$	$0 \cdot 347$	$0 \cdot 428$	0.638
$\varepsilon^{25} \ldots \ldots \ldots$	-	$2 \cdot 3351$	-	$2 \cdot 4114$	$2 \cdot 4751$	$2 \cdot 5426$	$2 \cdot 6645$	

whence $\Sigma 10^{7} \Delta B / \Sigma w_{2}=34 \cdot 2 ; \Sigma \Delta \varepsilon / \Sigma w_{2}=25 \cdot 9$

$10^{5} w_{2}$	\cdots	980	1572	1947	2606	3527
d_{25}		.02704	1.02649	1.02611	1.02552	1.02459

$d_{4}{ }^{25} \ldots . .1 .02704 \quad 1.02649 \quad 1.02611 \quad 1.02552 \quad 1.02459$
whence $\Sigma \Delta d / \Sigma w_{2}=-0.096 ; \Delta n=c a .0$ for concentrations up to $w_{2}=0.03$

N-t-Butylformamide								
$\begin{array}{ll} 10^{6} w_{2} & \ldots \\ 10^{7} \Delta B & \ldots \end{array}$	2543	3551	4404	5510	$10^{5} w_{2}$	2700	5908	10,885
	$0 \cdot 0527$	$0 \cdot 0672$	$0 \cdot 0919$	$0 \cdot 1076$	$10^{4} \Delta n$	3		13
	whence $\Sigma 10^{7} \Delta B / \Sigma w_{2}=20.0$					whence $\Sigma \Delta n / \Sigma w_{2}=0.011$		
$10^{5} w_{2} \ldots$	519	698	976	1175	1279	1720	2138	2215
ε^{25}..	2.3074	$2 \cdot 3411$	$2 \cdot 3952$	2.4315	$2 \cdot 4568$	$2 \cdot 5345$	$2 \cdot 6160$	$2 \cdot 6352$
$d_{4}{ }^{25}$	1.02726	1.02706	1.02666	-	1.02615	1.02560	-	1.02491

whence $\Sigma \Delta \varepsilon_{1} / \Sigma \psi_{2}=19 \cdot 1 ; \Sigma \Delta d / \Sigma w_{2}=-0 \cdot 140$

$\begin{aligned} & 10^{5} w_{2} \\ & 10^{7} \Delta B \end{aligned}$	NN-Diphenylformamide					
	204	375	508	594	697	
	0.0252	0.0468	0.0623	$0 \cdot 0700$	$0 \cdot 0870$	
	whence $\Sigma 10^{7} \Delta B / \Sigma w_{2}=12 \cdot 3$					
$10^{5} w_{2}$	339	609	910	1315	1733	2679
$10^{4} \Delta n$		10	-	21	29	44
ε^{25}	$2 \cdot 2263$	$2 \cdot 2565$	2.2803	2.3122	$2 \cdot 3454$	$2 \cdot 4209$
$d_{4}{ }^{25}$	$1 \cdot 02840$	-	$1 \cdot 02906$	1.02954	1.02995	1.03098

Acetamide							
$10^{5} w_{2} \quad \ldots$	431	523	644	733	851	1619	2060
$10^{7} \Delta B \ldots$	$0 \cdot 108$	$0 \cdot 127$	0.172	$0 \cdot 182$	$0 \cdot 240$	0.417	0.566
whence $\Sigma 10^{7} \Delta B / \Sigma w_{2}=26.4$							
$10^{5} \mu_{2} \quad \ldots$	1250	1715	1973	2352	2766		
$10^{4} \Delta n \ldots$	1	1	2	2	2		
$d_{4}{ }^{25} \ldots \ldots$.	1.02844	$1 \cdot 02859$	1.02870	$1 \cdot 02880$	1.02891		
whence $\Sigma \Delta n / \Sigma w_{2}=0.008 ; \Sigma \Delta d / \Sigma w_{2}=0.034$							
$10^{5} w_{2}$.	532	801	1124	1616	2014		
$\varepsilon^{25} \ldots \ldots \ldots$.	$2 \cdot 3752$	2.4583	2.5582	2.7164	$2 \cdot 8466$		

Experimental

Materials, Apparatus, etc.- N-t-Butylformamide, prepared by the addition of a solution of sulphuric acid in acetic acid to a mixture ${ }^{1}$ of t-butyl alcohol, sodium cyanide, and acetic acid, had b. p. $200-202^{\circ}$. N-t-Butylacetamide, prepared by passing gaseous isobutene (generated from a heated t-butyl alcohol-conc. sulphuric acid mixture) into a solution ${ }^{2}$ of acetonitrile, acetic acid, and sulphuric acid, had m. p. 98° (from hexane). The other solutes were commercial samples which on purification gave: formamide, b. p. $79^{\circ} / 6 \mathrm{~mm}$.; N-methylformamide, b. p. $82^{\circ} / 10 \mathrm{~mm} . ; N N$-dimethylformamide, b. p. $76^{\circ} / 39 \mathrm{~mm} . ; N N$-diphenylformamide, m. p. 73.5°; acetamide, m. p. 80°; benzamide, m. p. 128°.

Apparatus, techniques, symbols used, and methods of calculation have been described before. ${ }^{3-5}$ Observations are recorded in Table 1 and results summarised in Table 2. The quantities $\Delta \varepsilon, \Delta d, \Delta n$, and ΔB are the differences found between the dielectric constants, densities, refractive indices, and Kerr constants, respectively, of the solvent and of solutions containing weight fractions w_{2} of solute. The following data apply at 25° to dioxan: $\varepsilon_{1}=$ $2.2090 ; \quad d_{1}=1.0280 ; \quad\left(n_{\mathrm{D}}\right)_{1}=1.4202 ; \quad 10^{7} B_{1}=0.068 ; \quad 10_{\mathrm{s}}^{12} K_{1}=0.0116$.

TAble 2

Dielectric polarisations, dipole moments, and molar Kerr constants (from observations on solutions in dioxan at 25°)

Solute	$\alpha \varepsilon_{1}$	β	γ	δ	$\infty_{\infty} P_{2}$ (c.c.)	R_{D} (c.c.)	$\mu(\mathrm{D})$ *	$10^{12}{ }_{\infty}\left({ }_{m} K_{2}\right) \ddagger$
Formamide	40.9	$0 \cdot 129$	0.02	562	314	$10 \cdot 3$	3.85	284
N-Methylformamide	$30 \cdot 9$ ¢ \dagger	-0.007	0.01	$321 \dagger$	317	14.9	$3 \cdot 84$	210
$N N$-Dimethylformamide	$25 \cdot 9$	-0.094	0	503	334	$19 \cdot 7$	3.91	417
N-t-Butylformamide.....	$19 \cdot 1$	-0.136	0.01	294	350	28.9	3.94	336
$N N$-Diphenylformamide	7.88	$0 \cdot 111$	$0 \cdot 12$	180	305	$59 \cdot 8$	3.44	406
Acetamide	$31 \cdot 4$	0.033	0.01	388	321	14.3	3.87	257
N -t-Butylacetamide	$15 \cdot 9 \dagger$	-0.145	0.01	$153 \dagger$	337	$33 \cdot 2$	$3 \cdot 85$	195
Benzamide	$14 \cdot 9$	$0 \cdot 143$	$0 \cdot 11$	173	326	$34 \cdot 9$	$3 \cdot 76$	234

* Calculated assuming ${ }_{\mathrm{D}} P=1.05 R_{\mathrm{D}}$; uncertainty in $\mu c a . \pm 0.03 \mathrm{D}$. \dagger Variation of ε_{12} or B_{12} with w_{2} was non-linear over the concentration range studied; the experimental data ($\Delta \varepsilon$ or ΔB) were fitted to a regression equation of the form $\Delta \varepsilon=a w_{2}+b w_{2}{ }^{2}$, and subsequent extrapolation to $w_{2}=0$ resulted in the coefficients $\alpha \varepsilon_{1}$ or δ here recorded. \ddagger Uncertainty in $\infty\left({ }_{m} K_{2}\right)$ values is estimated at $\pm 5 \%$.

Previous Measurements.-McClellan ${ }^{6}$ lists the following values for dipole moments (D) in dioxan: formamide, $3 \cdot 0,{ }^{7} 3 \cdot 86 ;^{8}$ acetamide, $3 \cdot 90,{ }^{8} 3 \cdot 6,{ }^{9} 3 \cdot 92 ;{ }^{10}$ benzamide, $3 \cdot 84,{ }^{8} 3 \cdot 6,{ }^{9} 3 \cdot 80,{ }^{11}$ $3.88 .{ }^{12}$ In addition, the following values (in dioxan) were recorded by Lee and Kumler: ${ }^{13}$ $N N$-dimethylformamide, $3 \cdot 95$; acetamide, $3 \cdot 70$. The vapour phase dipole moments, recently reported ${ }^{14}$ for N-methylformamide (3.82), $N N$-dimethylformamide (3.80), and acetamide $(3 \cdot 75)$, are similar to the values (in Table 2) now derived by extrapolation to infinite dilution in dioxan.

Discussion

Bond and Group Polarisabilities.-Initially we examine the degree of applicability of bond polarisability data previously recorded ${ }^{15}\left[b_{\mathrm{L}}(\mathrm{H}-\mathrm{N})=0.50, b_{T}(\mathrm{H}-\mathrm{N})=b_{V}(\mathrm{H}-\mathrm{N})=\right.$
${ }^{1}$ J. J. Ritter and J. Kalish, J. Amer. Chem. Soc., 1948, 70, 4048.
${ }^{2}$ J. J. Ritter and P. P. Minieri, J. Amer. Chem. Soc., 1948, 70, 4045.
${ }^{3}$ R. J. W. Le Fèvre, " Dipole Moments," Methuen, London, 3rd edn., 1953.
${ }^{4}$ A. D. Buckingham, J. Y. H. Chau, H. C. Freeman, R. J. W. Le Fèvre, D. A. A. S. Narayana Rao, and J. Tardif, $J_{.,}$1956, 1405.

5 C. G. Le Fèvre and R. J. W. Le Fėvre, (a) Rev. Pure Appl. Chem. (Australia), 1955, 5, 261; (b) ch. XXXVI in " Physical Methods of Organic Chemistry," ed. A. Weissberger, Interscience, New York and London, 3rd edn., vol. 1, p. 2459.
${ }^{6}$ A. L. McClellan, "Tables of Experimental Dipole Moments," Freeman, San Francisco and London, 1963.
${ }^{7}$ G. D. Burdun and P. B. Kantor, Doklady Akad. Nauk, S.S.S.R., 1949, 67, 985.
${ }^{8}$ W. W. Bates and M. E. Hobbs, J. Amer. Chem. Soc., 1951, 73, 2151.
${ }^{9}$ G. Devoto, Gazzetta, 1933, 63, 495.
10 W. D. Kumler, J. Amer. Chem. Soc., 1952, 74, 261.
${ }_{11}$ R. Davis, H. S. Bridge, and W. J. Svirbely, J. Amer. Chem. Soc., 1943, 65, 857.
12 G. K. Estok and S. P. Sood, J. Phys. Chem., 1957, 61, 1445.
${ }^{13}$ C. M. Lee and W. D. Kumler, J. Amer. Chem. Soc., 1962, 84, 571.
${ }^{14}$ R. M. Meighan and R. H. Cole, J. Phys. Chem., 1964, 68, 503.
${ }^{15}$ M. J. Aroney, R. J. W. Le Fèvre, and A. N. Singh, J., 1963, 5111.
$0.83 ; \quad b_{\mathrm{L}}(\mathrm{C}-\mathrm{N})=0.57, \quad b_{\mathrm{T}}(\mathrm{C}-\mathrm{N})=b_{\mathrm{V}}(\mathrm{C}-\mathrm{N})=0.69 ; \quad b_{\mathrm{L}}(\mathrm{C}=\mathrm{O})=2.30, \quad b_{\mathrm{T}}(\mathrm{C}=\mathrm{O})=1.40$, $\left.b_{\mathrm{V}}(\mathrm{C}=\mathrm{O})=0.46 ; \quad b_{\mathrm{L}}(\mathrm{C}-\mathrm{H})=b_{\mathrm{T}}(\mathrm{C}-\mathrm{H})=b_{\mathrm{V}}(\mathrm{C}-\mathrm{H})=0.64\right] *$ to the calculation of molecular parameters for the amides. For a planar model (I) of formamide, ${ }^{16}$ the polarisability tensor is specified, by addition ${ }^{5}$ of the component bond ellipsoids, as: b_{1} (calc.) $=4 \cdot 87$, b_{2} (calc.) $=4.04, b_{3}$ (calc.) $=3.45$, where b_{1} and b_{2} are located in the plane of symmetry such that the b_{1} axis makes an angle of 50° with $\mathrm{N}-\mathrm{C}$ and 10° with $\mathrm{C}=0$. If the permanent electric moment $(3.85 \mathrm{D})$ acts at 40° to the $\mathrm{N}-\mathrm{C}$ bond (found from Stark effect measure-

(I)

(II) trans

(III) cis
ments by Kurland and Bright Wilson ${ }^{16}$), then the vector components along the principal axes are: $\mu_{1}=3.79 \mathrm{D}, \mu_{2}=0.67 \mathrm{D}$, and $\mu_{3}=0$. Substitution of these values in equations (1)-(3) leads to a predicted molar Kerr constant of 178×10^{-12} (assuming ${ }_{\mathrm{D}} P /{ }_{\mathrm{k}} P=1 \cdot 1$) which is considerably lower than that observed $\left(284 \times 10^{-12}\right)$. Clearly the $\mathrm{H}-\mathrm{N}, \mathrm{C}-\mathrm{N}$, and $\mathrm{C}=\mathrm{O}$ bond polarisabilities listed above, which were derived from simple molecules, cannot be used to specify the highly resonating amide group $\left[>\mathrm{N}-\mathrm{C}=\mathrm{O}>\stackrel{+}{\mathrm{N}}=\mathrm{C}^{+}-\mathrm{O}^{-}\right]$.

$$
\begin{align*}
{ }_{\mathrm{m}} K & =2 \pi \boldsymbol{N}\left(\theta_{1}+\theta_{2}\right) / 9 \tag{1}\\
\theta_{1} & ={ }_{\mathrm{p}} P\left[\left(b_{1}-b_{2}\right)^{2}+\left(b_{2}-b_{3}\right)^{2}+\left(b_{3}-b_{1}\right)^{2}\right] / 45 \boldsymbol{k} T_{\mathrm{F}} P \tag{2}\\
\theta_{2} & =\left[\left(b_{1}-b_{2}\right)\left(\mu_{1}^{2}-\mu_{2}^{2}\right)+\left(b_{2}-b_{3}\right)\left(\mu_{2}^{2}-\mu_{3}^{2}\right)+\left(b_{3}-b_{1}\right)\left(\mu_{3}^{2}-\mu_{1}^{2}\right)\right] / \mathbf{4} \boldsymbol{5} \boldsymbol{k}^{2} T^{2} \tag{3}
\end{align*}
$$

The quantity $\left(\theta_{1}+\theta_{2}\right)$ is calculable for formamide from the observed molar Kerr constant [using equation (1)] as 67.5×10^{-35}. Since $\mu\left(o b s\right.$.) is large, then $\theta_{1} \leqslant \theta_{2}$, and as $\left(\theta_{1}+\theta_{2}\right)$, and hence θ_{2}, are very great and positive, it follows that the maximum polarisability axis must be located very near to the dipole-moment direction. If we make the reasonable approximations that $\theta_{1}=0$ and $\mu_{1}=\mu$ (obs.), equations (1), (3), and (4) can be solved, to yield values of $b_{1}(=5 \cdot 04)$ and $\left(b_{2}+b_{3}\right)(=6.60)$.

$$
\begin{equation*}
\mathrm{E}^{P}=0.95 R_{\mathrm{D}}=4 \pi \mathbf{N}\left(b_{1}+b_{2}+b_{3}\right) / 9 \tag{4}
\end{equation*}
$$

Similar considerations can safely be applied to each of the aliphatic amides of Table 2. The estimates of b_{1} and of $\left(b_{2}+b_{3}\right)$ thus obtained are listed in Table 3. Further, the observed moments for these molecules are virtually constant (all lie within the range $3.89 \pm 0.05 \mathrm{D}$), so we will assume that, in each case, μ (obs.), and hence b_{1}, are located as shown in (I) for formamide.

Table 3
Polarisability semi-axes

La Planche and Rogers ${ }^{17}$ recently showed from an n.m.r. spectral study of N-monosubstituted amides, that N -t-butylacetamide, unlike the corresponding formamide, exists exclusively as the trans-configuration (II). We accept this in the following discussion. If, then, the $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{H}$ link polarisability contributions ${ }^{\mathbf{1 5}}\left[b_{\mathrm{L}}(\mathrm{C}-\mathrm{C})=0.99, b_{\mathrm{T}}(\mathrm{C}-\mathrm{C})=\right.$ $\left.b_{V}(\mathrm{C}-\mathrm{C})=0.27\right]$ of the t-butyl group are subtracted from $b_{1}(N$-t-butylacetamide) we are

[^0]left with $b_{1}\left[\mathrm{C}(\right.$ trans $\left.) \cdot \mathrm{NH} \cdot \mathrm{CO} \cdot \mathrm{CH}_{3}\right]=5 \cdot 81$. Comparison of this quantity with b_{1} (acetamide) shows that substitution of an $\mathrm{N}-\mathrm{H}$ by an $\mathrm{N}-\mathrm{C}$ link wholly in the trans-position results in an incremental change in b_{1} of -0.61 . A similar substitution in the cis-position leads to a change in b_{1} of +0.79 [from $b_{1}\left(N N\right.$-dimethylformamide), b_{1} (formamide), and $\Delta b_{1}(\operatorname{trans})=$ $-0.61]$. It is possible, on this basis, to predict, from b_{1} (formamide), the theoretical values of $b_{1}($ trans $)$ and $b_{1}(c i s)$ for N-methylformamide and for N-t-butylformamide. The calculations are summarised in Table 4. It should be noted that in all cases considered the amide group is assumed to be planar. We thus conclude that, in dioxan solution, each of these molecules exist in both the cis- and trans-configurations, with the latter predominant. The trans-isomer abundances recorded in Table 4 agree reasonably with those (92% for N -methylformamide and $\mathbf{8 2} \%$ for N -t-butylformamide) given by La Planche and Rogers. ${ }^{17}$

Table 4

Compound			$b_{1}($ trans $)$	$+b_{3}($ trans $\left.)\right]$	${ }_{\mathrm{m}} K($ trans $)$
(i)	N-Methylfor	mide	6.35	10.54	176×10^{-12}
(ii)	N -t-Butylf	mide	11.93	$20 \cdot 65$	275
(i)	$b_{1}(c i s)$	$\left[b_{2}(c i s)+b_{3}(c i s)\right]$	${ }_{\mathrm{m}} K(c i s)$	${ }_{\mathrm{m}} K$ (obs.)	\% trans
	7.75	$9 \cdot 14$	518×10^{-12}	210×10^{-12}	90
(ii)	12.74	19.84	483	336	$c a .71 *$

* $b_{1}($ trans $)$ and $b_{1}(c i s)$ are not sufficiently divergent to allow a precise estimate of the trans: cis ratio.

Benzamide.-Specification of the molecular polarisability tensor can be effected by additivity of the component $\mathrm{C}_{6} \mathrm{H}_{5}$ and $\mathrm{H}_{2} \mathrm{~N} \cdot \mathrm{CO} \cdot \mathrm{C}$ group semi-axes. In the calculations, the following data were used [for $\mathrm{C}_{6} \mathrm{H}_{5}$ (ref. 15) and $\mathrm{H}_{2} \mathrm{~N} \cdot \mathrm{CO} \cdot \mathrm{C}$,* respectively]: $b_{1}, 10.56$ and $4.50 ; b_{2}, 10.56$ and $2.95 ; b_{3}, 6.72$ and 2.95 .

Table 5
Polarisabilities and molar Kerr constants calculated for conformations of benzamide

$\phi \quad b_{1}$ (calc.)				$10^{12}{ }_{\mathrm{m}} K$ (calc.)
	X	Y	Z	
- $\left\{\begin{array}{l}b_{1}=15.06\end{array}\right.$	+0.771	$+0.637$	0	
$0^{\circ}\left\{b_{2}=13.51\right.$	$+0.637$	-0.771	0	$+554$
$\left\{b_{3}=9.67\right.$	0	0	$+1$	
$\left\{b_{1}=13.51\right.$	$+0.627$	-0.775	$+0.076$	
$26^{\circ}\left\{b_{2}=14.85\right.$	$+0.721$	$+0.615$	$+0.318$	+383
$b_{3}=9.89$	-0.293	-0.144	$+0.945$	
$b_{1}=13.51$	$+0.626$	-0.772	$+0.113$	
$36^{\circ}\left\{b_{2}=14.66\right.$	$+0.666$	$+0.604$	$+0.438$	$+247$
$b_{3}=10.07$	-0.407	-0.199	$+0.892$	
$\left\{b_{1}=11 \cdot 16\right.$	- 0.0 .912	+0.411	0	
$90^{\circ}\left\{b_{2}=13.57\right.$	-0.411	$+0.912$	0	-335
$b_{3}=13.51$	0	0	$+1$	

Table 5 lists the polarisability semi-axes and molar Kerr constants calculated for conformations of benzamide defined by angles ϕ (where ϕ is the dihedral angle between the planes of the amide group and of the aromatic ring; e.g., for a planar molecule, $\phi=0^{\circ}$). The permanent electric moment components in the X, Y, and Z directions (see Figure 1) are: $\mu_{x}=3.76 \cos 40 ; \mu_{y}=3.76 \sin 40 ; \mu_{z}=0$. The observed molar Kerr constant $\left(+234 \times 10^{-12}\right)$ is lower than that calculated for the solid-state configuration ($\phi=26^{\circ}$ from an X-ray analysis by Penfold and White ${ }^{18}$) and corresponds to an angle ϕ of $c a .37^{\circ}$. The uncertainty in ϕ, though difficult to assess, may reasonably be taken as $\pm 5^{\circ}$.

[^1]NN-Diphenylformamide.-Polarisability parameters and molar Kerr constants computed for conformations of $N N$-diphenylformamide are given in Table 6. The polarisabilities of the $\mathrm{C}_{2} \mathrm{~N} \cdot \mathrm{CO} \cdot \mathrm{H}$ group were taken as $b_{1}=5 \cdot 22, b_{2}=b_{3}=\mathbf{2 \cdot 7 6}$, i.e., the semi-axes of $N N$-dimethylformamide (assuming axial symmetry) less six $\mathrm{C}-\mathrm{H}$ link contributions. The electric moment components along the reference axes X, Y, Z, were calculated on the

Figure 1

Figure 2
basis that μ ($N N$-diphenylformamide) is resolvable into μ_{a} and μ_{b}, where μ_{a} is equivalent to the moment of $N N$-dimethylformamide and μ_{b} is the vector sum of mesomeric moments directed along each $\mathrm{N}^{+\rightarrow} \mathrm{C}_{\text {ar }}$ axis. From $\mu($ resultant $)=3.44 \mathrm{D}$ and $\mu_{a}=3.91 \mathrm{D}$, the magnitude of μ_{b} follows as 0.6_{5} D and the location of μ (resultant) as 47° from the X direction (see Figure 2). The calculated molecular refraction obtained ${ }^{19}$ as $R(N N$-dimethylform-

Table 6
Polarisabilities and molar Kerr constants calculated for conformations of NN -diphenylformamide

$\alpha \quad b_{1}$ (calc.)	X	Y	\bar{Z}	$10^{12}{ }_{\mathrm{m}} \mathrm{K}$ (calc.)
, $b_{1}=24.54$	$+0.723$	-0.691	0	
$0^{\circ}\left\{b_{2}=26.93\right.$	$+0.691$	$+0.723$	0	904
$b_{3}=16.20$	0	0	$+1$	
「 $b_{1}=21.88$	$+0.922$	-0.170	-0.348	
			(+)	
$52^{\circ}\left\{b_{2}=25.72\right.$	+0.295	$+0.889$	$\underset{(-)}{+0.349}$	409 *
$b_{3}=20.06$	$\underset{(-)}{+0 \cdot 251}$	$\frac{-0.424}{(+)}$	+0.870	
$\left\{b_{1}=19 \cdot 60\right.$	$+0.965$	-0.264	0	
$90^{\circ}\left\{b_{2}=24 \cdot 19\right.$	$+0.264$	+0.965	0	113
$\left\{\begin{array}{l}b_{3}=23.88\end{array}\right.$	0	0	$+1$	

* The signs in parentheses refer to rotations of the phenyl groups in the anti-clockwise direction with respect to the X axis in Figure 2.
amide $)+2 R\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)-8 R(\mathrm{C}-\mathrm{H})$ is $1 \cdot 1$ c.c. smaller than the observed value, and this corresponds to a polarisability exaltation (Δb) of $1.24 \AA^{3}$. In the calculations we assign an increment of polarisability ($\Delta b / 2$) as operative along each phenyl 1,4 -axis. Conformations of NN -diphenylformamide are defined, in Table 6, by (equal) angles of rotation $\left(\alpha^{\circ}\right)$ of the phenyl groups, in the same sense from a theoretical planar model for which $\alpha=0^{\circ}$. The observed molar Kerr constant (406×10^{-12}) is in closest agreement with that calculated for $\alpha=52^{\circ}\left(\pm 5^{\circ}\right)$.

The award of a Sydney University Research Studentship to A. N. S. is gratefully acknowledged.

University of Sydney, Sydney, N.S.W., Australia.
19 A. I. Vogel, W. T. Cresswell, G. H. Jeffery, and J. Leicester, J., 1952, 514.

[^0]: * Polarisability semi-axes of bonds $b_{\mathrm{L}}, b_{\mathrm{T}}$, or b_{V}, or of molecules, b_{1}, b_{2}, or b_{3}, are quoted throughout in 10^{-24} c.c. $\left(\AA^{3}\right)$ units.
 ${ }^{16}$ R. J. Kurland and E. Bright Wilson, J. Chem. Phys., 1957, 27, 585.
 ${ }^{17}$ L. A. La Planche and M. T. Rogers, J. Amer. Chem. Soc., 1964, 86, 337.

[^1]: * I.e., the semi-axes of acetamide less three $\mathrm{C}-\mathrm{H}$ bond contributions; the assumption here that $b_{2}=b_{3}$ for the $\mathrm{H}_{2} \mathrm{~N} \cdot \mathrm{CO} \cdot \mathrm{C}$ group should introduce no serious error in the estimates of ${ }_{\mathrm{m}} K$ calc. (for benzamide) in the presence of the highly anisotropic phenyl group.
 ${ }^{18}$ B. R. Penfold and J. C. B. White, Acta Cryst., 1959, 12, 130.

