582. Molecular Polarisability. The Conformations of Certain Amides as Solutes in Dioxan

By M. J. ARONEY, R. J. W. LE FÈVRE, and A. N. SINGH

Dipole moments and molar Kerr constants are reported for formamide $(3.85 \text{ D} \text{ and } 284 \times 10^{-12})$, N-methylformamide $(3.84 \text{ D} \text{ and } 210 \times 10^{-12})$, NN-dimethylformamide $(3.91 \text{ D} \text{ and } 417 \times 10^{-12})$, N-t-butylformamide $(3.94 \text{ D} \text{ and } 336 \times 10^{-12})$, NN-diphenylformamide $(3.44 \text{ D} \text{ and } 406 \times 10^{-12})$, acetamide $(3.87 \text{ D} \text{ and } 257 \times 10^{-12})$, N-t-butylacetamide $(3.85 \text{ D} \text{ and } 195 \times 10^{-12})$, and benzamide $(3.76 \text{ D} \text{ and } 234 \times 10^{-12})$ as solutes in dioxan at 25°. The data are analysed to indicate that (a) the *trans*-isomer abundances for N-methylformamide and N-t-butylformamide are 90 and *ca*. 71%, respectively, (b) benzamide in dioxan is non-planar, the dihedral angle between the benzene ring and the plane of the amide group being $37^{\circ} \pm 5^{\circ}$, and (c) the preferred conformation of NN-diphenylformamide is attained by rotations (in the same sense) of both phenyl groups through $52^{\circ} \pm 5^{\circ}$ from a theoretical planar model.

THIS Paper is concerned with the experimental determination of the dipole moments and molar Kerr constants of a number of acid amides, and with the analysis of such data to yield information on the configurations of these molecules as solutes at high dilution in dioxan.

TABLE 1

Incremental Kerr constants, dielectic constants, densities, and refractive indices for solutions in dioxan at 25°

				Formamide				
$10^5 w_2 \dots$	515	583	753	850	1081	1258	1570	2083
$10^7 \Delta B \dots$	0.180	0.503	0.264	0.306	0.410	0.512	0.629	0.818
ϵ^{25}	2.4195	$2 \cdot 4480$	2.5144		2.6466		2.8471	3.0701
		whence	e $\Sigma 10^7 \Delta B / \Sigma$	$2w_2=38{\cdot}2;$	$\Sigma \Delta \varepsilon / \Sigma w_2 =$	= 4 0·9		
$10^5 w_2 \dots$	1215	1386	1510	2184	2829	3853		
$10^4\Delta n$		4		6	8	11		
d ₄ ²⁵	1.02961	1.02984	1.03000	1.03093	1.03174	1.03310		
		when	ce $\Sigma \Delta n / \Sigma w_2$	= 0.028;	$\Sigma \Delta d / \Sigma w_2 =$	0.133		
			N- <i>M</i>	lethylformar	nide			
$10^{5}w_{2}$	342	430	515	545	618	771	849	974
$10^7 \Delta \overline{B} \dots$	0.088	0.106	0.129	0.146	0.120	0.221	0.262	0.289
			whence 107	$\Delta B = 21.8u$	$w_2 + 889w_2^2$			
$10^{5}w_{2}$	375	505	567	824	1074	1292	1769	2075
ϵ^{25}	2.3238	2.3818	$2 \cdot 3903$	2.4820	2.5745	$2 \cdot 6851$	$2 \cdot 8610$	2.9920
			whence Δ :	$\varepsilon = 30 \cdot 9_5 w_2$	$+ 333w_2^2$			
10 ⁵ w ₂	1137	1554	2109	3232	6691			
$10^{4}\Delta n$			2	3	7			
d ₄ ²⁵	1.02793	1.02791	1.02788	1.02777	1.02753			
		whence	$\Sigma \Delta n / \Sigma w_2 =$	$= 0.010; \Sigma_{0}$	$\Delta d / \Sigma w_2 = -$	-0.006-		

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{r} 1751 \\ 0.638 \\ 6 \\ 2.6645 \\ \end{array} $						
whence $\Sigma 10^7 \Delta B / \Sigma w_2 = 34.2$; $\Sigma \Delta \varepsilon / \Sigma w_2 = 25.9$ $10^5 w_2 \dots 980$ 1572 1947 2606 3527							
10^5w_2 980 1572 1947 2606 3527							
$a_4^{a_0}$ 1.02704 1.02649 1.02611 1.02552 1.02459 whence $\sum \Delta d / \sum w = -0.096$: $\Delta w = -c_0 0$ for concentrations up to $w = -0.096$	- 0.03						
whence $\Delta \Delta a_1 \Delta a_2 = -0.000$, $\Delta n = ia$. O for concentrations up to a_2 .							
$\begin{array}{cccccccc} & & & & & & & \\ 10^6w_2 & \dots & 2543 & 3551 & 4404 & 5510 & & & & & & & & & & & & & & & & & & &$	$5908 10,885 \ 6 13$						
whence $\Sigma 10^7 \Delta B / \Sigma w_2 = 20.0$ whence $\Sigma \Delta n / \Sigma$	$\Sigma w_2 = 0.011$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$						
whence $\Sigma \Delta \varepsilon / \Sigma w_2 = 19.1$; $\Sigma \Delta d / \Sigma w_2 = -0.140$							
NN-Diphenvlformamide							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
whence $\Sigma 10^{7} \Delta B / \Sigma w_{2} = 12.3$							
$10^5 w_2 \dots 339 609 910 1315 1733 \\ 10^4 \Delta u \dots - 10 - 21 29$	$\begin{array}{c} 2679 \\ 44 \end{array}$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2 \cdot 4209 \\ 1 \cdot 03098$						
whence $\Sigma \Delta n / \Sigma w_2 = 0.164$; $\Sigma \Delta \varepsilon / \Sigma w_2 = 7.88$; $\Sigma \Delta d / \Sigma w_2 = 0.114$							
Acetamide							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2060 \\ 0.566$						
whence $\Sigma 10^7 \Delta B / \Sigma w_2 = 26.4$							
$10^5 w_2 \dots 1250 1715 1973 2352 2766 \\ 10^4 \Lambda u 1 1 2 2 2 2$							
d_4^{25} 1.02844 1.02859 1.02870 1.02880 1.02891							
whence $\Sigma \Delta n / \Sigma w_2 = 0.008$; $\Sigma \Delta d / \Sigma w_2 = 0.034$							
$10^5 w_2 \dots 532 = 801 = 1124 = 1616 = 2014$ $e^{25} = 2.3752 = 2.4583 = 2.5582 = 2.7164 = 2.8466$							
whence $\sum \Delta \varepsilon / \sum w_2 = 31.4$							
N-t-Butylacetamide $10^5w_2 \dots 558 577 772 992 1096 1405 2053 10^5w_2 \dots 305 10^7\Delta B \dots 0.060 0.066 0.090 0.125 0.137 0.186 0.295 10^4\Delta n \dots 4$	$58 ext{ 3917 ext{ 9090}}{5 ext{ 13}}$						
whence $10^7 \Delta B = 10.4 w_2 + 196 w_2^2$ whence Σ	$\Delta n / \Sigma w_2 = 0.014$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$						
whence $\Delta \varepsilon = 15.9w_2 + 78.2w_2^2$; $\Sigma \Delta d/\Sigma w_2 = -0.149$							
D							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 1552\\ 0{\cdot}177\end{array}$						
whence $\Sigma 10^7 \Delta B / \Sigma w_2 = 11.8$							
10⁵ w_2 684 1059 1883 2571 10⁴ Δn 10 15 29 39 whence $\Sigma \Delta n / \Sigma w_2 = 0.150$; e²⁵ 2 ·3657 2 ·4914 2 ·5925 $\Sigma \Delta d / \Sigma w_2 = 0.150$; <i>d.</i> ²⁶ 1 ·02910 1 ·02960 1 ·03080 1 ·03169	$\sum \Delta \varepsilon / \Sigma w_2 = 14.9;$ 0.147						

EXPERIMENTAL

Materials, Apparatus, etc.—N-t-Butylformamide, prepared by the addition of a solution of sulphuric acid in acetic acid to a mixture ¹ of t-butyl alcohol, sodium cyanide, and acetic acid, had b. p. 200-202°. N-t-Butylacetamide, prepared by passing gaseous isobutene (generated from a heated t-butyl alcohol-conc. sulphuric acid mixture) into a solution ² of acetonitrile, acetic acid, and sulphuric acid, had m. p. 98° (from hexane). The other solutes were commercial samples which on purification gave: formamide, b. p. 79°/6 mm.; N-methylformamide, b. p. 82°/10 mm.; NN-dimethylformamide, b. p. 76°/39 mm.; NN-diphenylformamide, m. p. $73 \cdot 5^{\circ}$; acetamide, m. p. 80° ; benzamide, m. p. 128° .

Apparatus, techniques, symbols used, and methods of calculation have been described before.³⁻⁵ Observations are recorded in Table 1 and results summarised in Table 2. The quantities $\Delta \varepsilon$, Δd , Δn , and ΔB are the differences found between the dielectric constants, densities, refractive indices, and Kerr constants, respectively, of the solvent and of solutions containing weight fractions w_2 of solute. The following data apply at 25° to dioxan: $\varepsilon_1 =$ 2.2090; $d_1 = 1.0280$; $(n_D)_1 = 1.4202$; $10^7B_1 = 0.068$; $10^{1}_{8}K_1 = 0.0116$.

TABLE 2

Dielectric polarisations, dipole moments, and molar Kerr constants (from observations on solutions in dioxan at 25°)

Solute	$\alpha \epsilon_1$	β	γ	δ	$_{\infty}P_{2}$ (c.c.)	R _D (c.c.)	μ (D) *	$10^{12} \infty ({}_{\rm m}K_2) $
Formamide	40.9	0.129	0.02	562	314	10.3	3.85	284
N-Methylformamide	30·9 ₅ †	-0.001	0.01	321 +	317	14.9	3.84	210
NN-Dimethylformamide	25.9	-0.094	0	503	334	19.7	3.91	417
N-t-Butylformamide	19.1	-0.136	0.01	294	350	28.9	3.94	336
NN-Diphenylformamide	7.88	0.111	0.15	180	305	$59 \cdot 8$	3.44	406
Acetamide	31.4	0.033	0.01	388	321	14.3	3.87	257
<i>N</i> -t-Butylacetamide	15·9 †	-0.142	0.01	153 +	337	$33 \cdot 2$	3.85	195
Benzamide	14.9	0.143	0.11	173	326	$34 \cdot 9$	3.76	234

* Calculated assuming $_{\rm D}P = 1.05R_{\rm D}$; uncertainty in μ ca. ± 0.03 D. \dagger Variation of ε_{12} or B_{12} with w_2 was non-linear over the concentration range studied; the experimental data ($\Delta\varepsilon$ or ΔB) were fitted to a regression equation of the form $\Delta\varepsilon = aw_2 + bw_2^2$, and subsequent extrapolation to $w_2 = 0$ resulted in the coefficients $\alpha\varepsilon_1$ or δ here recorded. \ddagger Uncertainty in $_{\infty}(_{\rm m}K_2)$ values is estimated at $\pm 5\%$.

Previous Measurements.--McClellan⁶ lists the following values for dipole moments (D) in dioxan: formamide, 3.0,7 3.86; 8 acetamide, 3.90,8 3.6,9 3.92; 10 benzamide, 3.84,8 3.6,9 3.80,11 3.88.12 In addition, the following values (in dioxan) were recorded by Lee and Kumler: 13 NN-dimethylformamide, 3.95; acetamide, 3.70. The vapour phase dipole moments, recently reported ¹⁴ for N-methylformamide (3.82), NN-dimethylformamide (3.80), and acetamide (3.75), are similar to the values (in Table 2) now derived by extrapolation to infinite dilution in dioxan.

DISCUSSION

Bond and Group Polarisabilities .- Initially we examine the degree of applicability of bond polarisability data previously recorded ¹⁵ $[b_{\rm L}({\rm H-N}) = 0.50, b_{\rm T}({\rm H-N}) = b_{\rm y}({\rm H-N}) =$

J. Ritter and J. Kalish, J. Amer. Chem. Soc., 1948, 70, 4048.
 J. J. Ritter and P. P. Minieri, J. Amer. Chem. Soc., 1948, 70, 4045.
 R. J. W. Le Fèvre, "Dipole Moments," Methuen, London, 3rd edn., 1953.
 A. D. Buckingham, J. Y. H. Chau, H. C. Freeman, R. J. W. Le Fèvre, D. A. A. S. Narayana Rao, Tractic L. Parcello C. More, 1967.

and J. Tardif, J., 1956, 1405. ⁵ C. G. Le Fèvre and R. J. W. Le Fèvre, (a) Rev. Pure Appl. Chem. (Australia), 1955, **5**, 261; (b) ch. XXXVI in "Physical Methods of Organic Chemistry," ed. A. Weissberger, Interscience, New York and London, 3rd edn., vol. 1, p. 2459.

A. L. McClellan, "Tables of Experimental Dipole Moments," Freeman, San Francisco and London, 1963.

G. D. Burdun and P. B. Kantor, Doklady Akad. Nauk, S.S.S.R., 1949, 67, 985.

⁸ W. W. Bates and M. E. Hobbs, J. Amer. Chem. Soc., 1951, 73, 2151.

- ⁶ W. W. Bates and M. E. HODDS, J. Amer. Chem. Soc., 1951, 76, 2151.
 ⁶ G. Devoto, Gazzetta, 1933, 63, 495.
 ¹⁰ W. D. Kumler, J. Amer. Chem. Soc., 1952, 74, 261.
 ¹¹ R. Davis, H. S. Bridge, and W. J. Svirbely, J. Amer. Chem. Soc., 1943, 65, 857.
 ¹² G. K. Estok and S. P. Sood, J. Phys. Chem., 1957, 61, 1445.
 ¹³ C. M. Lee and W. D. Kumler, J. Amer. Chem. Soc., 1962, 84, 571.
 ¹⁴ R. M. Meighan and R. H. Cole, J. Phys. Chem., 1964, 68, 503.
 ¹⁵ M. J. Aronev R. J. W. Le Fèvre and A. N. Singh, J. 1963, 5111.

¹⁶ M. J. Aroney, R. J. W. Le Fèvre, and A. N. Singh, J., 1963, 5111.

0.83; $b_{\rm L}({\rm C-N}) = 0.57$, $b_{\rm T}({\rm C-N}) = b_{\rm V}({\rm C-N}) = 0.69$; $b_{\rm L}({\rm C=O}) = 2.30$, $b_{\rm T}({\rm C=O}) = 1.40$, $b_{\rm V}({\rm C=O}) = 0.46$; $b_{\rm L}({\rm C-H}) = b_{\rm T}({\rm C-H}) = b_{\rm V}({\rm C-H}) = 0.64$]* to the calculation of molecular parameters for the amides. For a planar model (I) of formamide,¹⁶ the polarisability tensor is specified, by addition ⁵ of the component bond ellipsoids, as: $b_1({\rm calc.}) = 4.87$, $b_2({\rm calc.}) = 4.04$, $b_3({\rm calc.}) = 3.45$, where b_1 and b_2 are located in the plane of symmetry such that the b_1 axis makes an angle of 50° with N-C and 10° with C=O. If the permanent electric moment (3.85 D) acts at 40° to the N-C bond (found from Stark effect measure-

ments by Kurland and Bright Wilson ¹⁶), then the vector components along the principal axes are: $\mu_1 = 3.79 \text{ D}$, $\mu_2 = 0.67 \text{ D}$, and $\mu_3 = 0$. Substitution of these values in equations (1)—(3) leads to a predicted molar Kerr constant of 178×10^{-12} (assuming $_{\rm D}P/_{\rm E}P = 1.1$) which is considerably lower than that observed (284×10^{-12}). Clearly the H-N, C-N, and C=O bond polarisabilities listed above, which were derived from simple molecules,

cannot be used to specify the highly resonating amide group $[>N-\dot{C}=O>\dot{N}=\dot{C}-O^-]$.

$$_{\rm m}K = 2\pi N(\theta_1 + \theta_2)/9 \tag{1}$$

$$\theta_1 = {}_{\rm D}P[(b_1 - b_2)^2 + (b_2 - b_3)^2 + (b_3 - b_1)^2]/45kT_{\rm E}P$$
(2)

$$\theta_2 = [(b_1 - b_2)(\mu_1^2 - \mu_2^2) + (b_2 - b_3)(\mu_2^2 - \mu_3^2) + (b_3 - b_1)(\mu_3^2 - \mu_1^2)]/45k^2T^2 \quad (3)$$

The quantity $(\theta_1 + \theta_2)$ is calculable for formamide from the observed molar Kerr constant [using equation (1)] as 67.5×10^{-35} . Since $\mu(\text{obs.})$ is large, then $\theta_1 \ll \theta_2$, and as $(\theta_1 + \theta_2)$, and hence θ_2 , are very great and positive, it follows that the maximum polarisability axis must be located very near to the dipole-moment direction. If we make the reasonable approximations that $\theta_1 = 0$ and $\mu_1 = \mu(\text{obs.})$, equations (1), (3), and (4) can be solved, to yield values of $b_1 (=5.04)$ and $(b_2 + b_3) (=6.60)$.

$$\mathbf{E}^{P} = 0.95R_{\rm D} = 4\pi N(b_1 + b_2 + b_3)/9 \tag{4}$$

Similar considerations can safely be applied to each of the aliphatic amides of Table 2. The estimates of b_1 and of $(b_2 + b_3)$ thus obtained are listed in Table 3. Further, the observed moments for these molecules are virtually constant (all lie within the range 3.89 ± 0.05 D), so we will assume that, in each case, $\mu(\text{obs.})$, and hence b_1 , are located as shown in (I) for formamide.

TABLE 3

Polarisability semi-axes

Compound	b_1	$(b_2 + b_3)$	Compound	b_1	$(b_2 + b_3)$
Formamide	5.04	6.60	N-t-Butylformamide	12.16	20.42
N-Methylformamide	6.49	10.40	Acetamide	6.42	9.74
NN-Dimethylformamide	9.06	13.18	N-t-Butylacetamide	13.31	$24 \cdot 24$

La Planche and Rogers ¹⁷ recently showed from an n.m.r. spectral study of N-monosubstituted amides, that N-t-butylacetamide, unlike the corresponding formamide, exists exclusively as the *trans*-configuration (II). We accept this in the following discussion. If, then, the C-C and C-H link polarisability contributions ¹⁵ [$b_{\rm L}$ (C-C) = 0.99, $b_{\rm T}$ (C-C) = $b_{\rm V}$ (C-C) = 0.27] of the t-butyl group are subtracted from b_1 (N-t-butylacetamide) we are

^{*} Polarisability semi-axes of bonds b_{L} , b_{T} , or b_{V} , or of molecules, b_{1} , b_{2} , or b_{3} , are quoted throughout in 10^{-24} c.c. (Å³) units.

¹⁶ R. J. Kurland and E. Bright Wilson, J. Chem. Phys., 1957, 27, 585.

¹⁷ L. A. La Planche and M. T. Rogers, J. Amer. Chem. Soc., 1964, 86, 337.

left with $b_1[C(trans)\cdot NH\cdot CO\cdot CH_3] = 5\cdot81$. Comparison of this quantity with b_1 (acetamide) shows that substitution of an N-H by an N-C link wholly in the *trans*-position results in an incremental change in b_1 of -0.61. A similar substitution in the *cis*-position leads to a change in b_1 of +0.79 [from $b_1(NN$ -dimethylformamide), b_1 (formamide), and $\Delta b_1(trans) = -0.61$]. It is possible, on this basis, to predict, from b_1 (formamide), the theoretical values of $b_1(trans)$ and $b_1(cis)$ for N-methylformamide and for N-t-butylformamide. The calculations are summarised in Table 4. It should be noted that in all cases considered the amide group is assumed to be planar. We thus conclude that, in dioxan solution, each of these molecules exist in both the *cis*- and *trans*-configurations, with the latter predominant. The *trans*-isomer abundances recorded in Table 4 agree reasonably with those (92%) for N-methylformamide) given by La Planche and Rogers.¹⁷

	TABLE 4								
	Co	mpound	$b_1(trans)$	$[b_2(trans) + b_3(trans)]$	_m K(trans)				
(i) (ii)	N-Methylformamide N-t-Butylformamide		6·3510·5411·9320·65		$rac{176 imes 10^{-12}}{275}$				
(i)	$b_1(cis)$ 7.75	$\begin{bmatrix} b_2(cis) + b_3(cis) \end{bmatrix}$ 9.14	$_{ m m} K(cis)$ 518 $ imes$ 10) ${}_{\rm m}K({\rm obs.})$ 0 ⁻¹² 210 × 10 ⁻¹²	% trans 90				
(ii)	12.74	19.84	483	336	ca. 71 *				

* $b_1(trans)$ and $b_1(cis)$ are not sufficiently divergent to allow a precise estimate of the trans : cis ratio.

Benzamide.—Specification of the molecular polarisability tensor can be effected by additivity of the component C_6H_5 and $H_2N \cdot CO \cdot C$ group semi-axes. In the calculations, the following data were used [for C_6H_5 (ref. 15) and $H_2N \cdot CO \cdot C$,* respectively]: b_1 , 10.56 and 4.50; b_2 , 10.56 and 2.95; b_3 , 6.72 and 2.95.

TABLE 5

Polarisabilities and molar Kerr constants calculated for conformations of benzamide

	Direction cosines with							
ø	b_{i} (calc.)	X	Y	Z	$10^{12}{}_{\rm m}K$ (calc.)			
0° -	$\begin{cases} b_1 = 15.06 \\ b_2 = 13.51 \\ b_3 = 9.67 \end{cases}$	+0.771 + 0.637 = 0	$+ \frac{0.637}{-0.771}$	$0 \\ 0 \\ +1$	+554			
26° -	$\left\{egin{array}{ll} b_1 = 13{\cdot}51\ b_2 = 14{\cdot}85\ b_3 = 9{\cdot}89 \end{array} ight.$	+0.627 + 0.721 - 0.293	-0.775 + 0.615 - 0.144	$+ 0.076 \\ + 0.318 \\ + 0.945$	+ 383			
36° -	$\begin{cases} b_1 = 13.51 \\ b_2 = 14.66 \\ b_3 = 10.07 \end{cases}$	$+ \begin{array}{r} 0.626 \\ + \begin{array}{r} 0.666 \\ - \begin{array}{r} 0.407 \end{array}$	-0.772 + 0.604 - 0.199	+ 0.113 + 0.438 + 0.892	+247			
90° -	$\begin{cases} b_1 = 11 \cdot 16 \\ b_2 = 13 \cdot 57 \\ b_3 = 13 \cdot 51 \end{cases}$	+0.912 - 0.411 = 0	$^{+0.411}_{+0.912}$	$\begin{array}{c} 0\\ 0\\ +1\end{array}$	335			

Table 5 lists the polarisability semi-axes and molar Kerr constants calculated for conformations of benzamide defined by angles ϕ (where ϕ is the dihedral angle between the planes of the amide group and of the aromatic ring; *e.g.*, for a planar molecule, $\phi = 0^{\circ}$). The permanent electric moment components in the X, Y, and Z directions (see Figure 1) are: $\mu_x = 3.76 \cos 40$; $\mu_y = 3.76 \sin 40$; $\mu_z = 0$. The observed molar Kerr constant $(+234 \times 10^{-12})$ is lower than that calculated for the solid-state configuration ($\phi = 26^{\circ}$ from an X-ray analysis by Penfold and White ¹⁸) and corresponds to an angle ϕ of *ca.* 37°. The uncertainty in ϕ , though difficult to assess, may reasonably be taken as $\pm 5^{\circ}$.

* *I.e.*, the semi-axes of acetamide less three C-H bond contributions; the assumption here that $b_2 = b_3$ for the H₂N·CO·C group should introduce no serious error in the estimates of $_{\rm m}K$ calc. (for benzamide) in the presence of the highly anisotropic phenyl group.

¹⁸ B. R. Penfold and J. C. B. White, Acta Cryst., 1959, 12, 130.

NN-Diphenylformamide.—Polarisability parameters and molar Kerr constants computed for conformations of NN-diphenylformamide are given in Table 6. The polarisabilities of the C₂N·CO·H group were taken as $b_1 = 5.22$, $b_2 = b_3 = 2.76$, *i.e.*, the semi-axes of NN-dimethylformamide (assuming axial symmetry) less six C-H link contributions. The electric moment components along the reference axes X, Y, Z, were calculated on the

TABLE 6 Polarisabilities and molar Kerr constants calculated for conformations of NN-diphenylformamide

		Dire			
α	b_{i} (calc.)	\overline{X}	\widehat{Y}	Z	$10^{12}{}_{\rm m}K$ (calc.)
ſ	$b_1 = 24.54$	+0.723	-0.691	0	
_0° {	$b_2 = 26.93$	+0.691	+0.723	0	904
- l	$b_3 = 16.20$	0	0	+1	
ſ	$b_1 = 21.88$	+0.922	-0.120	-0.348	
	h = 95.79	0.205	0.880	(+)	400 *
52° {	02 - 20.12	± 0.230	+0.992	()	405
ł	$b_3 = 20.06$	+0.521	-0.424	`+́0·870	
		(—)	(+)		
ſ	$b_1 = 19.60$	+0.965	-0.264	0	
90° ₹	$b_{2} = 24.19$	+0.264	+0.965	0	113
l	$b_{3} = 23.88$	0	0	+1	

* The signs in parentheses refer to rotations of the phenyl groups in the anti-clockwise direction with respect to the X axis in Figure 2.

amide) $+ 2R(C_6H_6) - 8R(C-H)$ is 1·1 c.c. smaller than the observed value, and this corresponds to a polarisability exaltation (Δb) of 1·24 Å.³ In the calculations we assign an increment of polarisability $(\Delta b/2)$ as operative along each phenyl 1,4-axis. Conformations of NN-diphenylformamide are defined, in Table 6, by (equal) angles of rotation (α°) of the phenyl groups, in the same sense from a theoretical planar model for which $\alpha = 0^{\circ}$. The observed molar Kerr constant (406×10^{-12}) is in closest agreement with that calculated for $\alpha = 52^{\circ} (\pm 5^{\circ})$.

The award of a Sydney University Research Studentship to A. N. S. is gratefully acknowledged.

UNIVERSITY OF SYDNEY, SYDNEY, N.S.W., AUSTRALIA. [Received, October 26th, 1964.] ¹⁹ A. I. Vogel, W. T. Cresswell, G. H. Jeffery, and J. Leicester, J., 1952, 514.